
Department of Engineering

EE 4710 Lab 2

Title: Clock-driven and priority driven scheduling

Objective: The student should become acquainted with clock and priority driven

systems, and use a real-time operating systems to successfully
schedule a set of tasks.

Parts: 1-C8051FX20-TB Evaluation Board
 1-USB Debug Adapter

Software: Silicon Laboratories IDE version 3.50.00 or greater, Salvo RTOS.

Preparation: Write the title and a short description of this lab in your lab book.

Make sure the page is numbered and make an entry in the table of
contents for this lab.

Create a new project using the Silicon Labs IDE as you did in Lab 1
(include mem.c, etc. but this time include library sfc51sdaa.lib).
Download the lab2 test file from the course website and store it in a
file called lab_test.c. Add that file to your project along with a new file
that you create called main.c. Change salvocfg to the following:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF // use the free library
#define OSLIBRARY_GLOBALS OSD // globals in the data segment
#define OSLIBRARY_CONFIG OSA // with delays and events
#define OSLIBRARY_VARIANT OSA // OS functions called from anywhere
#define OSEVENTS 3 // 1 events
#define OSEVENT_FLAGS 0 // 1 flags
#define OSMESSAGE_QUEUES 0 // 0 message queues
#define OSTASKS 3 // 2 tasks

lab2_test.c contains code, that once initialized continually releases
three tasks. Time is broken down into (approximately) 1ms slices,
and the tasks have the following properties (all times are number of
time slices.

Task

Period

Relative
Deadline

Execution
Time

A 3 3 1.5

B 4 2 1.5

C 12 12 1

All tasks are initially released at time 0.

Part 1: Clock Driven Schedule

You are to write a function, main() that initially calls OSInit() then
BoardInit() (from lab2_test.c) then enters a loop to perform jobs. The
loop should start with a call to WaitForNextTimeSlice(), followed by at
most two calls to DoJobX() (where X is A, B or C, depending upon
which tasks you schedule.) Repeat calls to WaitForNextTimeSlice()
and DoJobX() until you have the whole hyperperiod scheduled.

Note that DoJobX() is a function that consumes one half of a time
slice, and that it needs to be called enough times before the deadline
of task X to satisfy its execution time. (i.e. DoJobC must be called 2
times before 12 time slices have elapsed.)

Part 2. Priority Driven Schedule

Determine the static priority assignments necessary for these three
tasks so that a priority driven scheduler will produce a feasible
schedule.

Procedure: Compile, link, download and run your clock-driven scheduling code.

If it is working properly, the green LED on the board will light and
remain lit. Demonstrate this to your lab instructor.

Now, write a new main.c that, after calling OSInit and BoardInit()
creates 3 tasks with the priorities you determined earlier. Then, for
each task, write code similar to:

_OSLabel(TaskLabelA)

void TaskA(void)
{
 static int i;
 for (;;)
 {
 WAIT_FOR_RELEASE_A();
 for (i=0; i<3; ++i)
 { DoJobA();
 OS_Yield(TaskLabelA);
 }
 }
}

Compile, link, download and run your clock-driven scheduling code.
If it is working properly, the green LED on the board will light and
remain lit. Demonstrate this to your lab instructor.

Affix all your source code to your lab book then write a summary or
conclusion. Remember to sign or initial then date each page.

